If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-20y-48=0
a = 2; b = -20; c = -48;
Δ = b2-4ac
Δ = -202-4·2·(-48)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*2}=\frac{-8}{4} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*2}=\frac{48}{4} =12 $
| 12x-3x+90=12x+39 | | x+3x+(3x*2)=840 | | 75=19x-1 | | (5x^2)(-3x-2)=0 | | -10=14v=14v | | 3.6a-14=0 | | 6m=46 | | -8(a+3)=-3(a-2) | | 5x+8=106 | | 15.99x+7.99=100 | | x+32/5=21/6 | | 1=-3+4p+2p | | 2/3(x-5)=5/6(2x-8) | | 50.45x+57.95=60x | | 4u+14=32 | | 6x+6=3(x=6) | | 1,3483=-0,000004x^2+0,0008x+1,326 | | -5-15v=10 | | 61-2y=8 | | 155m+10=230m-15 | | (x/6)^2=x^2/36=36 | | 12+1/5x+3=10 | | 2y+6(y+30)=34 | | 7u-(3+u)3=33 | | 4=c-8 | | 60=13x-5 | | 0.6x=16 | | -1;x2=5 | | 3u+17=35 | | -57x-22=-47+43-5x | | 4x^2-40x+234=0 | | -7v+5(v-7)=-15 |